首页> 外文OA文献 >Lithium Migration in Li4Ti5O12 Studied Using in Situ Neutron Powder Diffraction
【2h】

Lithium Migration in Li4Ti5O12 Studied Using in Situ Neutron Powder Diffraction

机译:用原位中子粉末衍射研究Li4Ti5O12中的锂迁移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We used in situ neutron powder diffraction (NPD) to study the migration of Li in Li4Ti5O12 anodes with different particle sizes during battery cycling. The motivation of this work was to uncover the mechanism of the increased capacity of the battery made with a smaller-particle-sized anode. In real time, we monitored the anode lattice parameter, Li distribution, and oxidation state of the Ti atom, and these suggested an increase in the rate of Li incorporation into the anode rather than a change in the migration pathway as a result of the particle size reduction. The lattice of these anodes during continuous lithiation undergoes expansion followed by a gradual contraction and then expansion again. The measured lattice parameter changes were reconciled with Li occupation at specific sites within the Li4Ti5O12 crystal structure, where Li migrates from the 8a to 16c sites. Despite these similar Li-diffusion pathways, in larger-particle-sized Li4Ti5O12 the population of Li at the 16c site is accompanied by Li depopulation from the 8a site, which is in contrast to the smaller-particle-sized anode where our results suggest that Li at the 8a site is replenished faster than the rate of transfer of Li to the 16c site. Fourier-difference nuclear density maps of both anodes suggest that 32e sites are involved in the diffusion pathway of Li. NPD is again shown to be an excellent tool for the study of electrode materials for Li-ion batteries, particularly when it is used to probe real-time crystallographic changes of the materials in an operating battery during charge–discharge cycling. © 2014, American Chemical Society.
机译:我们使用原位中子粉末衍射(NPD)研究了在电池循环过程中Li在具有不同粒径的Li4Ti5O12阳极中的迁移。这项工作的动机是揭示用较小粒径的阳极制成的电池增加容量的机理。实时地,我们监测了阳极晶格参数,Li分布和Ti原子的氧化态,这些结果表明Li掺入阳极的速率有所增加,而不是由于颗粒导致迁移路径的改变尺寸缩小。在连续锂化过程中,这些阳极的晶格经历膨胀,然后逐渐收缩,然后再次膨胀。测得的晶格参数变化与Li4Ti5O12晶体结构中特定位置的Li占据相符,其中Li从8a迁移到16c。尽管存在类似的锂扩散途径,但在较大粒径的Li4Ti5O12中,在16c处的Li种群伴随着8a处的Li减少,这与较小粒径的阳极相反,我们的结果表明8a站点中的Li补充速度快于Li转移至16c站点的速度。两个阳极的傅里叶差核密度图表明,32e位参与了Li的扩散途径。 NPD再次被证明是研究锂离子电池电极材料的出色工具,尤其是当NPD用于探测充放电循环过程中工作电池中材料的实时晶体学变化时。 ©2014,美国化学学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号